Posts

The Universal Serial Bus (USB) has quickly become an expected technology included in any new tech hardware. From smartphone chargers to flash drives and printer to computer connections. But what is the difference between the two most common USB versions, USB 2.0, USB 3.0 and USB 4.0?

5 KEY DIFFERENCES BETWEEN USB 2.0, USB 3.0 AND BEYOND

USB 2.0 was released in 2000 whereas USB 3.0 was released in 2008. In those 8 years, 5 major innovations improved the usage of USB 3.0. Coming in 2019, USB 4.0 will be released to address higher data transfer rates.

 

 

 

Transfer Rates (Speed)

 

USB 2.0 has a transfer rate of 480 Megabits per second (Mbps). Its counterpart USB 3.0 has a transfer rate of 10x that, offering a transfer rate of 5 Gigabits per second (Gbps). More recently, USB 3.2 offers a transfer rate of 20 Gbps and in 2019, we can expect the ratification of USB 4.0, which will offer 40 Gbps.  These transfer rates allow quicker uploads of data.

 

Physical Changes

 

In order to offer an increase in the transfer rate, the USB Type-A/B connector for USB 3.0 and higher requires more pins than USB 2.0, increasing from 4 to 10. To accommodate the physical updates, USB 3.0 required the design of new USB Type-A/B connectors.  Additionally, the arrival of the USB Type-C connector has 24 pins and allows for inverted insertion.

 

 

Bandwidth

 

USB 2.0 offers one-way communication between devices. This means that it can only handle data transfers one direction at a time. With USB 3.0, they contain two unidirectional paths, allowing them to maintain transfers in both directions at the same time. While the USB-C connector adds two more data paths for a total of four.  These are key innovations for improving data transfer load times and improving efficiency.

 

Power

 

While simultaneously sending data, USB 2.0 provides a maximum of 500 mA when charging devices. USB 3.0 offers up to 900 mA – cutting charging time nearly in half while sending data.  The categorizing of USB power has evolved and new standards have been released for power delivery.  Depending on the connector and wire type, up to 5A at 20V or 100W can be delivered to a device needing a charge. 

 

Compatibility

 

The USB Implementers Forum (USB-IF) maintains that their revisions are always backward compatible.  This means that USB 2.0 devices are compatible with USB 3.0 – though only at USB 2.0 speeds.

If you are looking to learn even more about the USB versions available, be sure to check out our USB 101 blog.

 

The Universal Serial Bus was originally developed to be an industry standard connection between communications, computers, and other devices. Dubbed the USB, this technology quickly replaced previous standards that hadn’t been regulated across devices. It became the gold standard, the Lingua Franca of the technological boom.

5 MAIN USB VERSIONS AND WHAT THEY DELIVER

There are dozens of different types of USBs, from 1.0-4.0, A-C, and even minis – and it’s tough to keep track of which ones perform what.

USB 1.0 Capabilities

USB 1.0 was originally designed in an effort to streamline connection between all devices. After arriving on the scene in 1996, USB 1.0 became the go-to standard between brands, technologies, and devices.

USB 2.0 Capabilities

After USB 1.0 took off in popularity, USB 2.0 set out to increase speed for connecting, charging, and sharing. USB 2.0 went through several iterations over a multiple year span, becoming a critical innovation from 2000-2010 that ushered in a new age of expected speed and accuracy for syncing devices, charging rapidly, and sharing downloads and uploads seamlessly.

USB 3.0 Capabilities

USB 3.0 was developed basically to shame anyone who thought 2.0 was truly an upgrade (kind of). It introduced the USB “SuperSpeed” capability, as well as improving data transfer and charging speeds. USB 3.0 ports are denoted with a blue color code (or the super sweet SS initials).

 USB 4.0 Capabilities

USB 4.0 was developed to improve upon data transfer rates up to 40 Gbps and interoperability with Thunderbolt.  This capability will available on the USB-C connector and cable.

USB Type-C Capabilities

USB Type-C is backwards compatible with USB 3.0 and 2.0, eliminating the compatibility with Type-A ports. Almost any device that supports USB 3.1 use USB-C port. Both ends of the USB cable are the same which allows a device to be connected with reversible plug orientation, so you never have to worry about plugging in your device the wrong way. USB Type-C delivers more power which gives the opportunity to charge larger electronics, such as laptops.

WHY DO THE DIFFERENT USB VERSIONS MATTER?

Each USB version delivers different speeds and works with different ports.

It’s important to understand which USB versions work best on which power levels. In order to incorporate USB ports into designing spaces and furniture, it is critical to know what USB version will fit most efficiently. Whether you are looking for a fast charge to keep people moving along, a trickle charge hoping they’ll stick around longer, or the ability to sync and share between other devices like printers and computers, you’ll need to know each capacity.

An easy fallback is to assume that USB 2.0 ports will work well when incorporating into furniture. While USB 3.0 is even better, USB 2.0 is still internationally the most compatible option. In theory, USB 3.0 was developed to work on 2.0 ports and for 3.0 ports to also accept 2.0 charging and data transfers.

As always, the supplier of your tech will know best – don’t be afraid to ask questions. After all, they’re there to help you succeed.