Gone are the days of plugging in your electronics and being tethered down in order to charge. As devices are evolving in technology, so is the way we power up, and the latest evolution is towards wireless charging.
Qi charging is a form of wireless charging, and these days you’ll find it in use on a variety of small personal electronics—such as smartphones—but interest is growing across other devices too. With most devices adopting Qi standards, wireless charging is likely to become a standard part of technology in the near future and the integration of new wireless charging regulated devices will change the way we charge at home, in the office and even on the go. Here, we’ll give you an overview of how it works, which companies are using it, safety-related issues and projected market growth.
SO, HOW DOES WIRELESS CHARGING WORK?
Wireless charging can come in a variety of forms across many devices.
Radio Charging
Radio charging is a way to wirelessly charge commonly seen in devices such as wireless keyboards and mice, medical devices, watches and music players. These devices are powered on small batteries and use radio waves to send and receive wireless signals. When the device is configured to the same frequency, you are able to charge.
Magnetic Resonance Charging
For larger devices that use a significant amount of power, such as a large computer, electric car or vacuum cleaner, resonance charging is used. Resonance requires a copper coil to be attached to the device needing the charge with another copper coil attached to a source of power. The charging occurs when both copper coils are configured to a common electromagnetic frequency, thus charging from the power source over a short distance.
Inductive Charging
Qi is a form of inductive wireless charging. It occurs when energy is transferred from a charger to a receiver by way of electromagnetic induction. The charger uses an induction coil to create an electromagnetic field, which the receiver coil in the phone—or other device—simply converts back into electricity to feed the battery. The two coils typically need to be touching, with the receiver on top of the charger (or vice versa). Though this is considered by many to be cutting-edge technology, rechargeable toothbrushes and shavers have actually been using this kind of inductive charging since the 1990s. And Qi, a Chinese word that translates to “vital energy,” is today’s worldwide wireless charging standard. It’s able to provide from 5 to 15 watts of power—making it perfect for smaller electronics, like smartphones.
Check out below all of your inductive Qi options Byrne can provide:
WHO’S ON BOARD?
The mobile phone market remains the dominant force in overall use, with Samsung’s Galaxy smartphone series leading the pack. Technically speaking, these phones, starting with the S7 model, come equipped with dual-mode Qi, meaning the device is compatible with the Wireless Power Consortium (WPC) standards as well as the Power Matters Alliance (PMA) standards, so they will be able to charge with any wireless receiver. Although Apple didn’t release wireless charging compatible devices until 2017, iPhones now come Qi equipped starting from iPhone 8 and versions beyond which are compatible with any Qi certified charging device.
Wearables are also a big category interested in wireless charging, driven by the Apple Watch, Samsung Gear S2 and other popular products. Even larger electronics have begun adopting wireless charging options. In 2017, Dell launched the world’s first wireless charging laptop with their release of the 2 in 1 Latitude 7285. But consumers are now seeking flexibility with their wireless charging. Energous, a wireless charging corporation, has created a wireless charging ecosystem solution that allows charging without contact up to 15 feet away.
Given access to all these Qi-supported products, it’s interesting that in a recent poll by IHS, only 20% of respondents report actually using wireless charging technology—and only 16% charge their devices with this technology on a daily basis. Most users consider wireless to be a good way to supplement wired charging, rather than a primary charging method. This could be due to the inefficiency of Qi charging compared to wired. Wired charging holds around 85% efficiency in the amount of energy sent out while QI charging has only risen to 75% efficiency from its initial launch percentage of 60%. Generally, wireless charging isn’t as fast as wired. In addition to that, the price difference between wired and wireless explains why adoption rates for wireless charging aren’t higher. Any wireless charger that would outperform a wired charger ranges $40-60, about double the price of any wired charger. This article from MacRumors tests wired versus wireless charger performance with an iPhone X.
SAFETY ISSUES TO CONSIDER
The Qi Wireless Charging Standard—developed by the multinational Wireless Power Consortium—outlines a number of consumer safety precautions, including issues like heat shielding and foreign object detection, especially among non-certified equipment. Recent tests conducted by independent labs found that non-certified charging products can reach almost 200° Fahrenheit—enough to cause a third-degree burn.
Some smartphones claim they are water-resistant, or even waterproof, but most wireless chargers are not. As with all electrical devices that connect to a power outlet, liquid can be very dangerous. Users should never get a wireless charger wet—and need to be sure any phone is dry before setting it down to charge.
A poorly made charger may also not be able to detect if a foreign object—like your keys or a coin is sitting on the pad under your smartphone. As a result, the charging pad may continue to emit power, not only damaging your device, but potentially melting the other objects on the pad. So, it’s important to look for a charger with a foreign object detector—one which will shut down charging and alert you (usually with an LED light) that something other than a compatible device is in contact with your charger.
Finally, when it comes to health and safety, a common cause for concern is the effect of electromagnetic fields (EMF) emitted by wireless chargers. High levels of EMF have been found to pose health risks such as anxiety, depression, insomnia, and even suicidal behavior. However, the EMF emission levels involved in wireless charging are negligibly low as there is no sustained human contact with the charging pad. In fact, a study conducted by the World Health Organization (WHO) confirms that exposure to low EMF emissions does not lead to any known health problems.
Products holding Qi certification through the Wireless Power Consortium (WPC) go through rigorous testing in order to become regulated. Products may be included in the Qi Certified Product Database under these conditions:
- The product has passed compliance testing by an authorized test lab (ATL)
- The product has passed interoperability testing by an Interoperability Testing Center (IOC)
- The product is compliant with the latest version of the Qi Specification
- The owner of the product is a Qi Logo Licensee.
By ensuring that all Qi-Certified devices work together, regardless of manufacturer, country of origin, version of the standard used, etc., the Qi standard ensures a consistent and simple user experience, where a Qi-Certified phone placed on a Qi-Certified charger will simply work. The process of becoming Qi certified is done in six steps:
- The manufacturer of the product starts the registration procedure by filling in an on-line form with information about the product, uploads picture and self-declaration forms, selects the Authorized Test Lab (ATL) that will perform the compliance test, and the InterOperability Testint Center (IOC) that will perform the interoperability test.
- The Logo License Administrator (LLA) verifies if the form is filled in correctly.
- The Authorized Test Lab (ATL) performs the mandatory compliance tests described in the test specification and uploads a test report summary.
- The InterOperability testing Center (IOC) performs the interoperability test
- The manufacturer of the product finalizes the description of the product. Uploads a picture showing the product as it will be shipped to customers, and provides the type number that identifies this product.
- The Logo License Administrator (LLA) verifies that the information is complete and consistent and makes the product visible in the product registration database.
FUTURE OUTLOOK
Shipments of wireless power receivers/transmitters are forecasted to grow from some 450 million units back in 2017 to more than 2.2 billion units by 2023. And by 2027, wireless charging shipments are expected to reach 7.5 billion units. Smartphones, wearables and home appliances are predicted to be the top three market drivers for wireless charging over the coming years.
Smartphones should account for about 77% of the 6 billion wireless charging receiver devices sold by 2023. Annual shipment volume for these devices in particular is expected to top one billion units by 2020 and two billion by 2025—according to IHS Markit, the leading global source of critical analytics information and insight.
In addition to current technology, advancements in wireless Qi charging are expected. Ossia, a wireless technology company, is in the process of developing a solution that is capable of transmitting power to a phone case of a distance of a few feet to slowly charge the phone inside. Ossia has partnered with a case making company, Spigen, to bring this product to consumers. The transmitter and power receiving case is set to launch in 2020. The company Solace is creating technology that changes the game for wattage allowance. Their wireless powering solution, Equus, is capable of delivering up to 200 watts versus the typical 5 to 15 watts. This amount of wattage is used to power portable medical equipment like carts, hospital beds and vital signs monitors, and manufacturing test equipment such as sensors and robotics. Wireless charging technology is even crossing over to the automotive sector. BMW is the first car manufacturer to create a wireless charging system for their hybrid car. It is set to be available for the BMW 520e iPerformance plug-in hybrid in 2019. It is also expected to see more charge points in locations such as airport and restaurant tables.
THE QI TO SUCCESS
Ultimately, the broad success of Qi-Certified devices in the marketplace depends on all the elements interfacing seamlessly—regardless of manufacturer, country of origin, version used, etc. The Qi Wireless Charging Standard, mentioned earlier, is intended to do just that: to ensure a consistent and user-friendly experience, one where a Qi-Certified phone placed on a Qi-Certified charger will work reliably, each and every time.
To find to out if your device is Qi compatible, check out the Wireless Power Consortium’s product database tool.